Cantori, chaotic coordinates and temperature gradients in chaotic magnetic fields

Dr. Stuart Hudson, Princeton Plasma Physics Laboratory

1st International Leiden Symposium on Plasma Physics, Netherlands, 2017

- 1 Motivation: Error fields, 3D effects, etc. create "fieldline chaos" in magnetically confined plasmas, which deterioates confinement.
- 2 **Method:** Compare invariant and *almost* invariant structures of fieldline flow to isotherms, where T satisfies $\kappa_{\parallel} \nabla_{\parallel}^2 T + \kappa_{\perp} \nabla_{\perp}^2 T = 0$, with $\kappa_{\parallel}/\kappa_{\perp} = 10^{10}$.

3 We found:

- 1) isotherms coincide with cantori;
- 2) T = T(s) is a surface function in "chaotic coordinates" based on "ghost surfaces".

eg. M3D simulation of CDX-U

With increasing non-axisymmetry, the flux surfaces become increasingly "broken"

- Invariant flux surfaces are destroyed near "resonances", $\omega = n / m$, n, m are integers construction of action-angle coordinates for perturbed system fails because of "small-denominators"
- Magnetic islands (resonance zones) form chaotic, "irregular" field lines emerge, that wander **seemingly randomly** over a volume
- Confinement deteriorates, the pressure is flat inside islands and chaos

- •The calculation of three-dimensional partially-chaotic equilibria must
- Be consistent with theoretical plasma physics
- Be consistent with experimental results
- **Be consistent with Hamiltonian chaos theory**
- employ numerical methods that accommodate fractals

separatrix splitting, unstable manifold, "chaotic tangle"

WHERE TO START? START WITH CHAOS

The fractal structure of chaos is related to the structure of numbers

islands & chaos emerge at every rational

 \rightarrow about each rational n/m, introduce excluded region, width r/m^k

KAM Theorem

 \rightarrow flux surface can survive if $|\omega - n/m| > r/m^k$, for all n, m

(Kolmogorov, Arnold, Moser)

we say that ω is "strongly-irrational" if ω avoids all excluded regions

Greene's residue criterion → the most robust flux surfaces are associated with alternating paths

$$\rightarrow$$
 Fibonacci ratios $\frac{0}{1}$, $\frac{1}{1}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{5}$, $\frac{5}{8}$, $\frac{8}{13}$, $\frac{13}{21}$, $\frac{21}{34}$, ...

THEN, ADD PLASMA PHYSICS

Force balance means the pressure is a "fractal staircase"

- $\nabla p = \mathbf{j} \times \mathbf{B}$, implies that $\mathbf{B} \cdot \nabla p = 0$
- i.e. pressure is constant along a field line

• Pressure is flat across the rationals

(assuming no "pressure" source inside the islands)

- \rightarrow islands and chaos at every rational \rightarrow chaotic field lines wander about over a volume
- Pressure gradients supported on the "most-irrational" irrationals

→ surviving "KAM" flux surfaces confine particles and pressure

Diophantine Pressure Profile

is it pathological?

Fieldline transport is restricted by irrational field-lines

The irrational KAM surfaces disintegrate into invariant irrational sets ≡ cantori, which continue to restrict fieldline transport even after the onset of chaos.

KAM surfaces **stop** radial field-line transport.

Cantori ≡ "broken KAM surfaces" do not stop, but do slow down radial field-line transport

[S.R. Hudson, Phys. Rev. E 74, 056203 (2006)]

 \leftarrow poloidal angle \rightarrow

Cantori are approximated by high-order periodic orbits;

High-order (minimizing) periodic orbits are located using variational methods.

- 1. Magnetic fieldlines are stationary curves, C, of the action, $S[C] \equiv \int_{C} \mathbf{A} \cdot d\mathbf{l}$, where $\mathbf{A} = \psi \nabla \theta \chi(\psi, \theta, \zeta) \nabla \zeta$, and $\chi = \frac{1}{2}\psi^2 + \sum k_{m,n}(\psi) \cos(m\theta n\zeta)$.
- 2. Setting $\delta S = 0$ gives $\dot{\theta} = \frac{B^{\theta}}{B^{\zeta}}$ and $\dot{\psi} = \frac{B^{\psi}}{B^{\zeta}}$.
- 3. A piecewise-linear, $\theta(\zeta) \equiv \theta_i + \frac{(\theta_{i+1} \theta_i)}{(\zeta_{i+1} \zeta_i)}(\zeta \zeta_i)$, trial curve allows analytic evaluation of the action integral, $S = S(\theta_0, \theta_1, \theta_2, \dots)$.
- 4. To find (p,q) periodic curves, use Newton's method to find $\frac{\partial S}{\partial \theta_i} = 0$, with constraint $\zeta_N = \zeta_0 + 2\pi q$ and $\theta_N = \theta_0 + 2\pi p$
- 5. Two types of periodic orbit:

0: stable, action minimax,

X: unstable, action-minimizing, \rightarrow cantori as $p/q \rightarrow$ irrational.

robust = not sensitive to Lyapunov error

Ghost-surfaces constructed via action-gradient flow between the stable & unstable periodic orbits.

[C. Golé, J. Differ. Equations 97, 140 (1992), R.S. MacKay and M.R. Muldoon, Phys. Lett. A 178, 245 (1993)]

- 1. At the minimax (stable) periodic orbit, the eigenvector of the Hessian, $\frac{\partial}{\partial \theta_j} \frac{\partial}{\partial \theta_i} S$, with negative eigenvalue indicates the direction in which the action integral decreases.
- 2. Pushing a trial curve from the minimax p/q orbit down the action gradient flow to the minimizing (unstable) p/q orbit defines "ghost surfaces".

Action Gradient Flow:
$$\frac{\partial \theta_i}{\partial \alpha} = -\frac{\partial S}{\partial \theta_i}$$

problem: action-gradient flow is small near integrable limit

where α is arbitrary integration parameter (new angle).

3. Ghost surfaces may be thought of as rational coordinate surfaces that pass through magnetic islands (resonance zones), i.e. "replacement" flux surfaces.

Ghost-surfaces are identical to quadratic-flux-minimizing surfaces (if using appropriate angles).

1. Quadratic-flux-minimizing surfaces minimize

$$\varphi \equiv \frac{1}{2} \int_{\mathcal{S}} \left(\frac{\partial S}{\partial \theta} \right)^2 d\theta d\zeta = \frac{1}{2} \int_{\mathcal{S}} (\sqrt{g} \mathbf{B} \cdot \mathbf{n})^2 d\theta d\zeta.$$

2. A constrained variational principle for rational pseudo-orbits exists:

$$S[\mathcal{C}] = \int_{\mathcal{C}} \mathbf{A} \cdot d\mathbf{l} - \nu \left(\int \theta \, d\zeta - a \right).$$

- 3. Freedom in the choice of angles, $\sqrt{g}(\theta, \zeta)$, exploited so that ghost-surfaces = quadratic-flux minimizing surfaces.
- 4. This approach provides
 - (i) intuitive understanding,
 - (ii) faster algorithm.

[R.L Dewar, S.R Hudson & P. Price, Phys. Lett. A **194**, 49 (1994)]

[S.R. Hudson & R.L. Dewar, Phys. Lett. A, **373**, 4409 (2009)]

[R.L.Dewar, S.R.Hudson & A.M.Gibson, J. Plasma Fusion Res. SERIES 9, 487 (2010)]

Numerically solving anisotropic heat transport exploits field-alligned coordinates (α,β,η)

- 1. Heat flux $\nabla \cdot \mathbf{q} = 0$, where $\mathbf{q} = \mathbf{b} \cdot \nabla T \kappa_{\parallel} \mathbf{b} + \kappa_{\perp} \nabla_{\perp} T$, strongly anisotropic.
- 2. Parallel relaxation employs field-alligned coordinates, $\mathbf{B} = \nabla \alpha \times \nabla \beta$, so parallel derivative is accurate, $\nabla_{\parallel}^2 T = \frac{\partial^2 T}{\partial \eta^2} = B^{\zeta} \frac{\partial}{\partial \zeta} \left(\frac{B^{\zeta}}{B^2} \frac{\partial T}{\partial \zeta} \right)$.
- 3. Perpendicular relaxation simply $\nabla_{\perp}^2 T = \frac{\partial^2 T}{\partial \alpha^2} + \frac{\partial^2 T}{\partial \beta^2}$.
- 4. Sparse linear system solved iteratively on numerical grid, resolution = $2^{12} \times 2^{12}$.

Isotherms coincide with cantori and ghostsurfaces!

Ghost-surface for high-order periodic orbits "fill in the gaps" in the (irrational) cantori.

Ghost-surfaces and isotherms are almost indistinguishable; suggests T=T(s).

[S.R. Hudson & J. Breslau, Phys. Rev. Lett. **100**, 095001 (2008)]

Chaotic-coordinates simplifies temperature profile to a smoothed fractal (devils) staircase.

Ghost-surfaces can be used as radial coordinate surfaces.

- 1. From $0 = \frac{\partial}{\partial s} \int_{V} \nabla \cdot \mathbf{q} \, dv = \frac{\partial}{\partial s} \int_{\partial V} \mathbf{q} \cdot \mathbf{n} \, d\sigma$, assume T = T(s) to derive $T' = \frac{const.}{\kappa_{\parallel} \Omega + \kappa_{\perp} G}$ for quadratic-flux $\Omega = \int g^{ss} \frac{B_n^2}{B^2} \, d\sigma$, and metric $G = \int g^{ss} d\sigma$, $g^{ss} = \nabla s \cdot \nabla s$.
- 2. In the "ideal limit", $\kappa_{\perp} \to 0$, $T'(s) \to \infty$ on irrational KAM surfaces (where $\Omega = 0$).
- 3. Non-zero κ_{\perp} ensures T(s) is smooth; T'(s) peaks on minimal Ω surfaces = noble cantori.

Temperature Profile

$$\frac{\kappa_{\parallel}}{\kappa_{\perp}} = 10^{10}$$

[S.R. Hudson, Phys. Plasmas **16**, 010701^s(2009)]

Summary

- 1. In chaotic magnetic fields, anisotropic heat transport is restricted by irrational fieldlines = cantori.
- Ghost surfaces are identical (depending on angle) to quadratic-flux-minimizing surfaces; a simple numerical construction is introduced.
- 3. Interpolating between rational (p/q) ghost surfaces allows "chaotic magnetic coordinates", or "action-angle coordinates for non-integrable Hamiltonian systems".
- 4. In chaotic coordinates, the temperature profile takes a simple form.